Types related to datapoint types
Classes¶
DataManagerDefinition(**data: Any)Definition for a Squid Data Manager.
Attributes: manager_type: The type of the event manager. host: The hostname or IP address of the Data Manager server. port: The port number of the Data Manager server. db_url: The URL of the database used by the Data Manager.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.manager_types.ManagerDefinition
madsci.common.types.base_types.MadsciBaseModel
pydantic.main.BaseModel
Class variables¶
manager_id: str:manager_type: Literal[<ManagerType.DATA_MANAGER: 'data_manager'>]:model_config:name: str:DataManagerHealth(**data: Any)Health status for Data Manager including database and storage connectivity.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.manager_types.ManagerHealth
madsci.common.types.base_types.MadsciBaseModel
pydantic.main.BaseModel
Class variables¶
db_connected: bool | None:model_config:storage_accessible: bool | None:total_datapoints: int | None:DataManagerSettings(**values: Any)Settings for the MADSci Data Manager.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.manager_types.ManagerSettings
madsci.common.types.base_types.MadsciBaseSettings
pydantic_settings.main.BaseSettings
pydantic.main.BaseModel
Class variables¶
collection_name: str:database_name: str:file_storage_path: str | pathlib.Path:manager_definition: str | pathlib.Path:mongo_db_url: pydantic.networks.AnyUrl:server_url: pydantic.networks.AnyUrl:DataPoint(**data: Any)An object to contain and locate data created during experiments.
Attributes: label: The label of this data point. step_id: The step that generated the data point. workflow_id: The workflow that generated the data point. experiment_id: The experiment that generated the data point. campaign_id: The campaign of the data point. data_type: The type of the data point, inherited from class. datapoint_id: The specific ID for this data point. data_timestamp: The time the data point was created.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.base_types.MadsciBaseModel
pydantic.main.BaseModel
Descendants¶
madsci.common.types.datapoint_types.FileDataPoint
madsci.common.types.datapoint_types.ObjectStorageDataPoint
madsci.common.types.datapoint_types.ValueDataPoint
Class variables¶
data_timestamp: datetime.datetime- time datapoint was created
data_type: madsci.common.types.datapoint_types.DataPointTypeEnum- type of the datapoint, inherited from class
datapoint_id: str- specific id for this data point
label: str | None- Label of this data point
model_config:ownership_info: madsci.common.types.auth_types.OwnershipInfo | None- Information about the ownership of the data point
Static methods¶
discriminate(datapoint: DataPointDataModels) ‑> madsci.common.types.datapoint_types.FileDataPoint | madsci.common.types.datapoint_types.ValueDataPoint | madsci.common.types.datapoint_types.ObjectStorageDataPointReturn the correct data point type based on the data_type attribute.
Args: datapoint: The data point instance or dictionary to discriminate.
Returns: The appropriate DataPoint subclass instance.
object_id_to_str(v: str | bson.objectid.ObjectId) ‑> strCast ObjectID to string.
DataPointTypeEnum(*args, **kwds)Enumeration for the types of data points.
Attributes: FILE: Represents a data point that contains a file. JSON: Represents a data point that contains a JSON serializable value.
Ancestors (in MRO)¶
builtins.str
enum.Enum
Class variables¶
FILE:JSON:OBJECT_STORAGE:FileDataPoint(**data: Any)A data point containing a file.
Attributes: data_type: The type of the data point, in this case a file. path: The path to the file.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.datapoint_types.DataPoint
madsci.common.types.base_types.MadsciBaseModel
pydantic.main.BaseModel
Class variables¶
model_config:path: str | pathlib.Path- Path to the file
ObjectStorageDataPoint(**data: Any)A data point that references an object in S3-compatible storage (MinIO/S3).
This data point stores essential information about an object in S3-compatible storage without storing access credentials.
Attributes: url: The accessible URL for the object (can be used in frontend). storage_endpoint: The endpoint of the storage service (e.g., ‘minio
.example .com:9000’). bucket_name: The name of the bucket containing the object. object_name: The path/key of the object within the bucket. content_type: The MIME type of the stored object. size_bytes: The size of the object in bytes. etag: The entity tag (typically MD5) of the object. custom_metadata: Additional user-defined metadata for the object. Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.datapoint_types.DataPoint
madsci.common.types.base_types.MadsciBaseModel
pydantic.main.BaseModel
Class variables¶
bucket_name: str | None:content_type: str | None:custom_metadata: dict[str, str]:etag: str | None:model_config:object_name: str | None:path: str | pathlib.Path- Path to the file
public_endpoint: str | None:size_bytes: int | None:storage_endpoint: str:url: str | None:ObjectStorageSettings(**values: Any)Settings for S3-compatible object storage.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.base_types.MadsciBaseSettings
pydantic_settings.main.BaseSettings
pydantic.main.BaseModel
Class variables¶
access_key: str:default_bucket: str:endpoint: str | None:region: str | None:secret_key: str:secure: bool:ValueDataPoint(**data: Any)A data point corresponding to a single JSON serializable value.
Attributes: data_type: The type of the data point, in this case a value. value: The value of the data point.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.Ancestors (in MRO)¶
madsci.common.types.datapoint_types.DataPoint
madsci.common.types.base_types.MadsciBaseModel
pydantic.main.BaseModel
Class variables¶
model_config:value: Any- Value of the data point